
The Hanoi Omega-Automata Format
This document describes the Hanoi Omega-Automata (HOA) format. The name is a reference to the ATVA’13
conference, which was organized in Hanoi, and where the foundations of this format were laid.

The HTML and PDF versions of this document are updated from the sources on github.

Current tool support is described on a separate page.

All the examples shown here can also be downloaded separately.

For a short introduction we have a tool paper published at CAV’15. The slides from the lightning talk are
available, but the poster covers much more of the format.

Current status
This is version 1 of the format. The document may evolve slightly to clarify some parts and fix typos, but you
should expect no major semantic change.

If you see any problem, please report it on the issue tracker.

Change log:

• 2019-03-27: Clarify that states may have no outgoing edges (#70)
• 2019-03-27: Clarify that acc-sig can be specified for both states and edges (#69)
• 2015-06-21: Improve definition of accepting sets in the semantics (#48)
• 2015-05-26: Clarify notion of canonical encoding, better support for parity automata with property:

colored, and cleaner definition of parity acceptance in corner cases (#46)
• 2015-05-20: More compact canonical encoding for parity acceptance, and canonical encoding for min odd

and max even. (#42 and #43)
• 2015-04-17: Some clarification in case States: is missing. (#39)
• 2015-04-17: Fix transition-based semantics to deal with duplicate transitions. (#38)
• 2015-02-24: Clarify that HEADERNAME may not start with -. (#37)
• 2015-02-06: Version 1 published.

Goals
Design a format, inspired from ltl2dstar’s format, but which:

• is more compact when a lot of atomic propositions are used, or when the automaton is not complete.
• supports non-deterministic and alternating omega-automata.
• supports state-labeled omega-automata.
• supports different types of acceptance conditions, preferably in a way that is easy to extend.
• supports transition-based acceptance.
• consider new lines as any other white-space characters, i.e., as token separators. All the examples below

should work even after newlines have been removed or moved around (this typically happens if you
copy/paste an automaton into a mailer that reformats paragraphs). A use case for not using any newline
is when compiling results from experiments into a file, with one automaton per line (and maybe other
measurments if that is a CSV file), for easier filtering with line-oriented tools such as grep/cut/sed.

• supports streams of omega-automata (i.e., multiple automata can be concatenated together and processed
in batch).

Supported Types of Omega-Automata
The HOA format supports many types of finite automata over infinite words: automata with labels on transitions
or labels on states, and with a wide range of acceptance conditions based on states or transitions appearing
(in)finitely often in an automaton run. Instead of providing semantics for each supported type of omega-
automata, we provide only semantics for the general case of alternating automata with labels on transitions
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and transition-based accepting conditions. Labels on states and state-based acceptance are formally seen as
syntactic sugar (their semantics fully corresponding to the expected one). Automata in HOA format can have
multiple initial states.

Preliminary Notes
Input alphabets of all considered automata types consist of letters that are subsets of atomic propositions
(AP). To make the automata description more concise, we label states or transitions of automata with Boolean
formulas over AP representing choices between multiple letters. A Boolean formula represents the set of letters
satisfying the formula: a letter satisfies a formula if the valuation assigning True to all atomic propositions in
the letter and False to all other atomic propositions is a model of the formula. We use 𝔹(AP) to denote the set
of Boolean formulas over AP.

The format considers acceptance conditions built on a finite set {𝑆0, 𝑆1, … , 𝑆𝑘} of acceptance sets. Each
acceptance set 𝑆𝑖 is a subset of automata states and transitions. Loosely speaking, an acceptance condition says
which acceptance sets should be visited infinitely often and which only finitely often by a run to be accepting.
More precisely, an acceptance condition is a positive Boolean formula over atoms of the form Fin(𝑆𝑖), Fin(¬𝑆𝑖),
Inf(𝑆𝑖), or Inf(¬𝑆𝑖). The atom Fin(𝑆𝑖) indicates that all states and transitions in 𝑆𝑖 should occur at most finitely
often in the run, while Inf(𝑆𝑖) denotes that some state or transition of 𝑆𝑖 should be visited infinitely often. A
state in an acceptance set is formally seen as an abbreviation for inclusion of all transitions leaving the state.
The negation symbol ¬ represents the complement of the set with respect to all transitions. Many examples of
classical acceptance conditions (Büchi, Rabin, Streett, parity) will be given later.

The format has a common approach to atomic propositions, states, and acceptance sets: the number of propo-
sitions/states/sets, say 𝑛, is first declared and all propositions/states/sets are then referenced as 0, 1, … , 𝑛 − 1.

Common Tokens
• STRING: a C-like double-quoted string "(\\.|[^\\"])*"
• INT: 0|[1-9][0-9]* A non-negative integer less than 231 written in base 10 (with no useless 0 at the

beginning).
• comments: /* … */ Comments may be introduced between any token by enclosing them with /* and */

(with proper nesting, i.e. /*a/*b*/c*/ is one comment). C++-style comments are not considered because
they require newlines. Tools can use comments to output additional information (e.g. debugging data)
that should be discarded upon reading.

• whitespace: [ \t\n\r] Except in double-quoted strings and comments, whitespace is used only for tok-
enization and can be discarded afterwards.

• BOOLEAN: [tf] The true and false Boolean constants.
• IDENTIFIER: [a-zA-Z_][0-9a-zA-Z_-]* An identifier made of letters, digits, - and _. Digits and - may

not by used as first character, and t or f are not valid identifiers.
• ANAME: @[0-9a-zA-Z_-]+ An alias name, i.e., ”@” followed by some alphanumeric characters, - or _.

These are used to identify atomic propositions or subformulas.
• HEADERNAME: [a-zA-Z_][0-9a-zA-Z_-]*: Header names are similar to identifiers, except that they are

immediately followed by a colon (i.e. no comment or space allowed). If an IDENTIFIER or a BOOLEAN is
immediately followed by a colon, it should be considered as a HEADERNAME.

General Layout
This format is designed so that we can write tools that can process automata in batch. A tool could for instance
get a stream of automata descriptions concatenated together as input and process these to output another
stream of automata.

Every automaton is described in two parts: a header, that supplies meta-data about the automaton (such as
number of states and acceptance condition), and a body, encoding the automaton as a labeled graph. The two
parts are separated by --BODY--. The token --END-- marks the end of the automaton.

automaton ::= header "--BODY--" body "--END--"

Additionally, the --ABORT-- token may be used after any token of this grammar (even in the header) to indicate
that the produced automaton should be discarded, for instance in case an error condition is detected during
output. In a streaming scenario, a new automaton can start immediately after such an --ABORT-- token. Note
that foo--ABORT-- is a valid identifier and shall not abort streaming: to ensure proper tokenization always add
a space or newline before --ABORT-- to abort the output.
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Header
header ::= format-version header-item*
format-version ::= "HOA:" IDENTIFIER
header-item ::= "States:" INT

| "Start:" state-conj
| "AP:" INT STRING*
| "Alias:" ANAME label-expr
| "Acceptance:" INT acceptance-cond
| "acc-name:" IDENTIFIER (BOOLEAN|INT|IDENTIFIER)*
| "tool:" STRING STRING?
| "name:" STRING
| "properties:" IDENTIFIER*
| HEADERNAME (BOOLEAN|INT|STRING|IDENTIFIER)*

The header is a list of header-items (a HEADERNAME followed by some data). Except for the ”HOA:” item, which
should always come first, the items may occur in any order. Some HEADERNAMEs have predefined semantics (and
might be mandatory) as specified below. This format also makes provision of additional (unspecified) header
names to be used.

Any given HEADERNAME should occur at most once, except for Start:, Alias:, and properties:. The case of
the HEADERNAME’s initial is used to specify whether tools may safely ignore a header item they do not support:
header items whose name start with an upper-case letter are expected to influence the semantic of the automaton:
tools should at least warn about any such HEADERNAME they do not understand. A HEADERNAME whose initial is
lowercase may be safely ignored without affecting the semantics.

Headers items HOA:, and Acceptance: must always be present.

HOA:

HOA: should always be the first token of the file. It is followed by an identifier that represents the version of the
format. This document specifies the first version of this format so this header should appear as

HOA: v1

States:

This optionnal header item specifies the number of states in the automaton.

The states are assumed to be numbered consecutively from 0. For instance:

States: 10

specifies an automaton with 10 states numbered from 0 to 9.

An empty automaton, with no states, can be specified with States: 0.

It is recommended to specify the number of states whenever possible, so that readers may preallocate data
structures and perform better error checking. Cases where States: could be missing are typically those where
an automaton is constructed on-the-fly during its output, and the actual number of states is unknown before
the end of the output.

Start:

This optional header item specifies the initial states. Multiple initial states can be specified by using several
Start: headers with a different state number.

Alternating automata can start in a conjunction of states specified using the & operator.

header-item ::= … | "Start:" state-conj
state-conj ::= INT | state-conj "&" INT

If the Start: header item is omitted, then the automaton has no initial state and denotes an empty language.

AP:

AP: gives the number of atomic propositions, followed by unique names for each of these atomic propositions
(using double-quoted C-strings). Atomic propositions are implicitly numbered from left to right, starting at 0.
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For instance

AP: 3 "a" "proc@state" "a[x] >= 2"

specifies three atomic propositions:

• atomic proposition 0 is "a"
• atomic proposition 1 is "proc@state"
• atomic proposition 2 is "a[x] >= 2"

The number of double-quoted strings must match exactly the number given, and should all be different. This
number may be 0, in which case it is not followed by any string, and this is equivalent to not using AP:.

Alias:

Aliases are used to name atomic propositions or common subformulas that will be used later as labels in the
automaton. This format can be used without any aliases, refering to atomic propositions by their numbers.
Naming atomic propositions using aliases can make the automaton more readable to the human, and naming
subformulas that are used repeatedly can help making the output more concise.

headeritem ::= … | "Alias:" ANAME label-expr
label-expr ::= BOOLEAN | INT | ANAME | "!" label-expr

| "(" label-expr ")"
| label-expr "&" label-expr
| label-expr "|" label-expr

The label-expr will also be used to label transitions in automata. INT refers to an atomic proposition number
(as specified on the AP: line), ANAME refers to a previously defined alias, and BOOLEAN are the Boolean values (t
or f). The Alias: line may appear multiple times, but it is forbidden to redefine an alias. The ! operator has
priority over & which in turn has priority over |. Parentheses may be used for grouping.

Here are some examples of aliases:

AP: 3 "a" "proc@state" "a[x] >= 2"
Alias: @a 0
Alias: @ps 1
Alias: @a2 2
Alias: @c @ps|@a2

The first three aliases are just mnemonic names for the atomic propositions, while the last one replace some
arbitrary subformula. Defining @c before the definition of @ps and @a2 would be incorrect.

Acceptance:

header-item ::= … | "Acceptance:" INT acceptance-cond

acceptance-cond ::= IDENTIFIER "(" "!"? INT ")"
| "(" acceptance-cond ")"
| acceptance-cond "&" acceptance-cond
| acceptance-cond "|" acceptance-cond
| BOOLEAN

The mandatory Acceptance: header item is used to specify the number of acceptance sets used by the automa-
ton and how these acceptance sets are combined in the acceptance condition. If 𝑚 sets are declared, these sets
are numbered from 0 to 𝑚 − 1. In this version of the format, the IDENTIFIER used in acceptance-cond can
only be Fin or Inf.

The acceptance condition is specified as a positive Boolean combination of expressions of the form Fin(x),
Fin(!x), Inf(x), and Inf(!x) where:

• x is an integer in [0, 𝑚) representing an accepting set,
• !x represents the complement of that set,
• Fin(x) and Inf(x) specify whether that set should be visited finitely or infinitely often.

The & operator has priority over |, and parentheses may be used for grouping.

Additionally the t and f Boolean constants can be used with their obvious meanings (t is always accepting
while f is never accepting).
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As explained previously, our semantics for acceptance are transition-based, so if an automaton uses both ac-
cepting states and accepting transitions, the acceptance of the states should be transferred to their outgoing
transitions so that complementation of acceptance sets can be performed with respect to all transitions.

For instance

Acceptance: 2 Fin(!0) & Inf(1)

declares two acceptance sets. A run of the automaton is accepting if it visits the complement of the first set
finitely often, and if it visits the second set infinitely often. More examples will be given in a later section.

An acceptance condition declaring 𝑚 sets needs not actually use all of these sets. In this case the unused sets
can be ignored if they appear in the body of the automaton.

acc-name:

header-item ::= … | "acc-name:" IDENTIFIER (IDENTIFIER | INT)*

This optional header item gives a symbolic name to the acceptance conditions specified by the mandatory
Acceptance: header item.

The first IDENTIFIER is a name, and the remaining IDENTIFIERs and INTs are parameters. The following
acceptance names are fully specified in a later section:

• Buchi
• generalized-Buchi
• co-Buchi
• generalized-co-Buchi
• Streett
• Rabin
• generalized-Rabin
• parity
• all
• none

Additional (unspecified) acceptance names may be used when needed.

tool: and name:

header-item ::= …
| "tool:" STRING STRING?
| "name:" STRING

These optional header items can be used to record information about the tool used to produce the automaton,
or to give a name to this automaton. The two arguments of tool: corresponds respectively to the tool’s name
and its (optional) version number.

For instance:

tool: "ltl-translate" "1.2-alpha"
name: "BA for GFa & GFb"

properties:

header-item ::= … | "properties:" IDENTIFIER*

The optional properties: header name can be followed by a list of identifiers that gives additional information
about the automaton. Multiple properties: lines can be used, it has the same effect as listing all properties on
one line. This information should be redundant in the sense that ignoring them should not impact the behavior
of the automaton. For instance stating that an automaton is deterministic with

properties: deterministic

may enable tools that read the automaton to choose a better data structure to store this automaton, but
ignoring this header item will not suddenly make the automaton non-deterministic.

The following properties have specified meanings, but additional may be added, and tools may simply ignore
those they do not know:

• state-labels hints that the automaton uses only state labels
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• trans-labels hints that the automaton uses only transition labels
• implicit-labels hints that the automaton uses only implicit transitions labels
• explicit-labels hints that the automaton uses only explicit transitions labels
• state-acc hints that the automaton uses only state-based acceptance specifications
• trans-acc hints that the automaton uses only transition-based acceptance specifications
• univ-branch hints that the automaton uses universal branching for at least one transition or for the initial

state
• no-univ-branch hints that the automaton does not uses universal branching
• deterministic hints that the automaton is deterministic, i.e., it has at most one initial state, and the

outgoing transitions of each state have disjoint labels (note that this also applies in the presence of universal
branching)

• complete hints that the automaton is complete, i.e., it has at least one state, and the transition function
is total

• unambiguous hints that the automaton is unambiguous, i.e., for each word there is at most one accepting
run of the automaton (this also applies in the presence of universal branching)

• stutter-invariant hints that the automaton describes a stutter-invariant property
• weak hints that in each strongly connected component (in alternating automata, SCC can be defined

in standard way if we see each universal branching transition as a set of non-branching transitions), all
transitions (or all states) belong to the same accepting sets

• very-weak hints that the automaton is weak and every SCC has exactly one state
• inherently-weak hints that the automaton does not mix accepting cycles and non-accepting cycles in

the same SCC
• terminal hints that the automaton is weak, that no non-accepting cycle can be reached from any accepting

cycle, and that each SCC containing an accepting cycle is complete, i.e., the transition function is definied
for each state of the SCC and each letter

• tight hints that the automaton is tight, i.e. for every word 𝑤 = 𝑎0𝑎1 … accepted by the automaton there
exists an accepting run over 𝑤 such that whenever two suffixes 𝑤𝑖 = 𝑎𝑖𝑎𝑖+1 … and 𝑤𝑗 = 𝑎𝑗𝑎𝑗+1 … of 𝑤 are
identical, the run reaches identical states (or sets of the states in the case of alternating automaton) by
reading the corresponding prefixes 𝑎0 … 𝑎𝑖−1 and 𝑎0 … 𝑎𝑗−1

• colored hints that each transition (or each state, for state-based acceptance) of the automaton belongs
to exactly one acceptance set; this is typically the case in parity automata

Note that even if some property implies another one (for instance explicit-labels implies trans-labels) it
is recommended to specify both.

Canonical acceptance specifications for classical conditions
The Acceptance: line is what defines the acceptance semantics of the automaton and the acc-name: has only
informative value. However, tools that do not want to implement a parser for the Acceptance: line may decide
to only support input HOA file that carry an acc-name: they support. To avoid surprises, when the acc-name:
line is used, the mandatory Acceptance: line should match exactly the canonical acceptance formulas given in
the following examples.

Note that the order of the terms in the canonical acceptance formulas matters even though the Boolean op-
erators are commutative and associative (e.g., acc-name: Rabin 1 corresponds to Fin(0)&Inf(1) but not
Inf(1)&Fin(0)). This restriction makes it easier to detect potential mismatches between acc-name: and
Acceptance:.

Some of the examples below use Acceptance: specifications for which there are no acc-name: defined.

Büchi or co-Büchi

Those acceptance conditions are specified with

acc-name: Buchi
Acceptance: 1 Inf(0)

or

acc-name: co-Buchi
Acceptance: 1 Fin(0)

Generalized Büchi or generalized co-Büchi

A generalized Büchi automaton with three acceptance sets can be defined with:
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acc-name: generalized-Buchi 3
Acceptance: 3 Inf(0)&Inf(1)&Inf(2)

A deterministic automaton with such an acceptance condition could be complemented without changing its
transition structure by simply complementing the acceptance, giving a generalized co-Büchi automaton:

acc-name: generalized-co-Buchi 3
Acceptance: 3 Fin(0)|Fin(1)|Fin(2)

Streett acceptance

Pairs of acceptance sets {(𝐿1, 𝑈1), … , (𝐿𝑘, 𝑈𝑘)}. A run is accepting for a pair (𝐿𝑖, 𝑈𝑖) iff the run visiting 𝐿𝑖
infinitely often implies that the run also visits 𝑈𝑖 infinitely often. A run is accepting iff it is accepting for all
pairs. Assuming 𝑘 = 3 and numbering these 6 sets from left (𝐿1) to right (𝑈3), this corresponds to:

acc-name: Streett 3
Acceptance: 6 (Fin(0)|Inf(1))&(Fin(2)|Inf(3))&(Fin(4)|Inf(5))

The parameter 3 in acc-name: Streett 3 refers to the number of Streett pairs.

Rabin acceptance

There are several equivalent presentations of Rabin acceptance, and working with tools that use different
definitions is often a source of confusion. Our notations of the acceptance condition accommodate all styles,
while giving clear and unambiguous semantics.

J. Klein, in ltl2dstar, uses pairs {(𝐿1, 𝑈1), … , (𝐿𝑘, 𝑈𝑘)} where there should be some pair (𝐿𝑖, 𝑈𝑖) such that
states in 𝐿𝑖 are visited infinitely often, but states in 𝑈𝑖 are visited finitely often. This is simply the complement
of the Streett acceptance above:

Acceptance: 6 (Inf(0)&Fin(1))|(Inf(2)&Fin(3))|(Inf(4)&Fin(5))

C. Löding, in his diploma thesis, uses pairs {(𝐸1, 𝐹1), … , (𝐸𝑘, 𝐹𝑘)} where 𝐸𝑖 should be visited finitely often,
and 𝐹𝑖 should be visited infinitely often. This is just a reordering of the previous pairs:

acc-name: Rabin 3
Acceptance: 6 (Fin(0)&Inf(1))|(Fin(2)&Inf(3))|(Fin(4)&Inf(5))

The parameter 3 in acc-name: Rabin 3 refers to the number of Rabin pairs. The reason this definition was
choosen for acc-name: Rabin is that is seems to be the most commonly used.

S. Krishnan, in his ISAAC’94 paper, uses pairs {(𝐿1, 𝑈1), … , (𝐿𝑘, 𝑈𝑘)} such that the set of recurring states of a
an accepting run should intersect 𝐿𝑖 and be included in 𝑈𝑖, for some pair (𝐿𝑖, 𝑈𝑖). A similar definition is used
by Manna and Pnueli in their ”Hierarchy of Temporal Properties” paper. This corresponds to:

Acceptance: 6 (Inf(0)&Fin(!1))|(Inf(2)&Fin(!3))|(Inf(4)&Fin(!5))

Generalized Rabin acceptance

Rabin acceptance has been generalized in works by Křetínský & Esparza or Babiak et al.. They both
translate LTL formulas into generalized Rabin automata in which the acceptance condition may look like
{(𝐸1, {𝐹11, 𝐹12, 𝐹13}), (𝐸2, {𝐹21, 𝐹22})}, and where a run is accepting if there exists some i such that the run
visits finitely often the set 𝐸𝑖 and infinitely often all the sets 𝐹𝑖𝑗. Such an acceptance condition can be specified
with:

acc-name: generalized-Rabin 2 3 2
Acceptance: 7 (Fin(0)&Inf(1)&Inf(2)&Inf(3))|(Fin(4)&Inf(5)&Inf(6))

The first parameter of generalized-Rabin gives the number of generalized pairs and the following parameters
give the number of 𝐹𝑖𝑗 sets in the corresponding pairs.

Parity automata

For parity acceptance, acc-name: parity has three parameters to support combinations of min/max and
even/odd, and to specify the range of acceptance sets used. In an automaton with max odd parity accep-
tance, for instance, a run is accepting if the maximum set number visited infinitely often along the run is
odd.
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A typical parity automaton should have property: colored, ensuring that each transition (or state) belongs
to exactly one acceptance set. In this context the maximum or minimum set number seen infinitely often along
a run always exists.

The canonical encodings for parity acceptance have been chosen so they behave nicely even in automata where
property: colored does not hold, i.e., where some transitions (or states) may belong to multiple acceptance
sets or none. In particular if 𝐹 is the set of numbers of the acceptance sets visited infinitely often by a run of
an automaton with 𝑛 acceptance sets, we assume that min(∅) = 𝑛 and max(∅) = −1 for the purpose of deciding
the parity of min(𝐹) or max(𝐹).
Here are the first instances of the min odd condition for different numbers of sets:

acc-name: parity min odd 0
Acceptance: 0 f

acc-name: parity min odd 1
Acceptance: 1 Fin(0)

acc-name: parity min odd 2
Acceptance: 2 Fin(0) & Inf(1)

acc-name: parity min odd 3
Acceptance: 3 Fin(0) & (Inf(1) | Fin(2))

acc-name: parity min odd 4
Acceptance: 4 Fin(0) & (Inf(1) | (Fin(2) & Inf(3)))

acc-name: parity min odd 5
Acceptance: 5 Fin(0) & (Inf(1) | (Fin(2) & (Inf(3) | Fin(4))))

The min even cases are dual:

acc-name: parity min even 0
Acceptance: 0 t

acc-name: parity min even 1
Acceptance: 1 Inf(0)

acc-name: parity min even 2
Acceptance: 2 Inf(0) | Fin(1)

acc-name: parity min even 3
Acceptance: 3 Inf(0) | (Fin(1) & Inf(2))

acc-name: parity min even 4
Acceptance: 4 Inf(0) | (Fin(1) & (Inf(2) | Fin(3)))

acc-name: parity min even 5
Acceptance: 5 Inf(0) | (Fin(1) & (Inf(2) | (Fin(3) & Inf(4))))

The max odd condition is similar to min odd, but encoded in the reverse direction:

acc-name: parity max odd 0
Acceptance: 0 t

acc-name: parity max odd 1
Acceptance: 1 Fin(0)

acc-name: parity max odd 2
Acceptance: 2 Inf(1) | Fin(0)

acc-name: parity max odd 3
Acceptance: 3 Fin(2) & (Inf(1) | Fin(0))
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acc-name: parity max odd 4
Acceptance: 4 Inf(3) | (Fin(2) & (Inf(1) | Fin(0)))

acc-name: parity max odd 5
Acceptance: 5 Fin(4) & (Inf(3) | (Fin(2) & (Inf(1) | Fin(0))))

And again max even conditions are dual to max odd:

acc-name: parity max even 0
Acceptance: 0 f

acc-name: parity max even 1
Acceptance: 1 Inf(0)

acc-name: parity max even 2
Acceptance: 2 Fin(1) & Inf(0)

acc-name: parity max even 3
Acceptance: 3 Inf(2) | (Fin(1) & Inf(0))

acc-name: parity max even 4
Acceptance: 4 Fin(3) & (Inf(2) | (Fin(1) & Inf(0)))

acc-name: parity max even 5
Acceptance: 5 Inf(4) | (Fin(3) & (Inf(2) | (Fin(1) & Inf(0))))

Note that in all those acceptance specifications, Inf is always followed by |, Fin is always followed by &, and
both are alternating.

Trivial acceptance conditions: all and none

When generalized-Büchi or Streett are used with 0 acceptance sets, they degenerate to conditions that
accept all recognized words:

acc-name: generalized-Buchi 0
Acceptance: 0 t

or

acc-name: Streett 0
Acceptance: 0 t

We also have similar cases for parity acceptance:

acc-name: parity max odd 0
Acceptance: 0 t

acc-name: parity min even 0
Acceptance: 0 t

Such an all-accepting condition typically occurs when translating safety formulas, or when building monitors. In
these specialized cases, it might not really make sense to name the acceptance generalized-Buchi or Streett.
For this reason, we also support the name all as a synonym:

acc-name: all
Acceptance: 0 t

Similarly, but less interestingly, generalized-co-Buchi and Rabin all degenerate to f when using 0 acceptance
pairs, and this acceptance condition can also be called none. The following acceptance specifications are
equivalent and describe automata that will reject all words:

acc-name: generalized-co-Buchi 0
Acceptance: 0 f

acc-name: Rabin 0
Acceptance: 0 f
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acc-name: generalized-Rabin 0
Acceptance: 0 f

acc-name: parity max even 0
Acceptance: 0 f

acc-name: parity min odd 0
Acceptance: 0 f

acc-name: none
Acceptance: 0 f

Other acceptance conditions
The HOA format is not restricted to the above classical acceptance conditions. Below are some examples of
acceptance conditions for which we define no name for use in acc-name:. Tools should however feel free to
introduce new names, should they need them.

A promise automaton generated by the tableau construction of ltl2tgba could be output with:

Acceptance: 3 Inf(!0) & Inf(!1) & Inf(!2)

(Spot actually makes an extra pass at the end of the translation to complement the acceptance sets in order to
obtain the more usual generalized Büchi Inf(0)&Inf(1)&Inf(2) acceptance).

The product of a Rabin 2 automaton with a Streett 2 automaton, performed in a very straightforward way,
will have an acceptance condition such as the following, where sets 1-4 are used as Rabin pairs, while sets 4-7
are used as Streett pairs.

Acceptance: 8 ((Inf(0)&Fin(1))|(Inf(2)&Fin(3)))&((Fin(4)|Inf(5))&(Fin(6)|Inf(7)))

Although it is not the case in the classical acceptance conditions, acceptance sets can be used multiple times in
the same acceptance formula, possibly even with both Fin and Inf primitives. For instance when translating
the LTL formula (GF(a) -> GF(b)) & (GF(b) -> GF(c)) into an automaton with Streett-like acceptance, it
would make sense to use:

Acceptance: 3 (Fin(0)|Inf(1))&(Fin(1)|Inf(2))

this however does not fit our strict definition of acc-name: Streett 2 (which would be Acceptance 4:
(Fin(0)|Inf(1))&(Fin(2)|Inf(3))).

Similarly, translating the LTL formulas GF(a) xor GF(b) could easily be done using an automaton with the
following acceptance:

Acceptance: 2 (Fin(0)&Inf(1))|(Inf(0)&Fin(1))

Tool authors implementing support for generic acceptance conditions are encouraged to verify that they correctly
deal with such cases, in which the same acceptance sets are used both in Fin and Inf primitives.

Body of the Automaton
The header is separated from the rest of the structure with --BODY--.

States are specified with the following grammar:

body ::= (state-name edge*)*
// the optional dstring can be used to name the state for
// cosmetic or debugging purposes, as in ltl2dstar's format
state-name ::= "State:" label? INT STRING? acc-sig?
acc-sig ::= "{" INT* "}"
edge ::= label? state-conj acc-sig?
label ::= "[" label-expr "]"

The INT occurring in the state-name rule is the number of this state. States should be numbered from 0 to
𝑛 − 1, where 𝑛 is the value given by the States: header item if it is present. If the States: header item is
missing, 𝑛 − 1 should be assumed to be the highest state number listed either in the automaton body (either
when defining a state, or when used as a destination of a transition) or as some initial state.
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States may be listed in any order, but should all be listed (i.e., if the header has States: 10 then the body
should have ten State: INT statements, with all numbers from 0 to 9). In addition to a number, a state may
optionally be given a name (the STRING token) for cosmetic or practical purposes.

The INT* used in acc-sig represent the acceptance sets the state or edge belongs to. Since we use transition-
based acceptance, when acc-sig is used on a state to declare membership to some acceptance sets, it is syntactic
sugar for the membership of all the outgoing transitions to this set. For instance, State: 0 {1 3} says that
all transitions leaving state 0 are in acceptance sets 1 and 3 (this is in addition to any acc-sig that could be
specified at edge level).

The state-conj encodes the destination of an edge as a conjunction of state numbers. Non-alternating automata
always use a single state number as destination. These conjunctions makes it possible to encode the universal
branching of alternating automata, while disjunction is simply encoded as multiple transitions.

If a state has a label, no outgoing edge of this state should have a label: this should be used to represent
state-labeled automata. In our semantics, we have to view this as syntactic sugar for all outgoing transitions
being labeled by this very same label.

If an edge has a label, all edges of this state should have a label.

If one state has no label, all its edges should have labels, unless there is exactly 2𝑎 edges listed, where 𝑎 is the
number of atomic propositions. In the latter case, each edge corresponds to a transition, with the same order
as in ltl2dstar. If a transition 𝑡 is the 𝑖-th transition of a state (starting with 0), then the label of 𝑡 can be
deduced by interpreting 𝑖 as a bitset. The label is a set of atomic propositions such that the atomic proposition
𝑗 is in the set if the 𝑗-th least significant bit of 𝑖 is set to 1.

Note that a state may have no outgoing edge if it represents some dead-end.

Examples
Transition-based Rabin acceptance and explicit labels

0
𝑎 U 𝑏

1

0
𝑎 ∧ �̄�

0
𝑏

1
⊤

HOA: v1
States: 2
Start: 0
acc-name: Rabin 1
Acceptance: 2 (Fin(0) & Inf(1))
AP: 2 "a" "b"
--BODY--
State: 0 "a U b" /* An example of named state */
[0 & !1] 0 {0}
[1] 1 {0}

State: 1
[t] 1 {1}

--END--

State-based Rabin acceptance and implicit labels

Because of implicit labels, the automaton necessarily has to be deterministic and complete.
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0
𝑎 U 𝑏

0

1
1

2
sink state

0

𝑎 ∧ �̄�
̄𝑎 ∧ 𝑏

𝑎 ∧ 𝑏

̄𝑎 ∧ �̄�

̄𝑎 ∧ �̄�
𝑎 ∧ �̄�

̄𝑎 ∧ 𝑏
𝑎 ∧ 𝑏

̄𝑎 ∧ �̄�

𝑎 ∧ �̄�̄𝑎 ∧ 𝑏

𝑎 ∧ 𝑏

HOA: v1
States: 3
Start: 0
acc-name: Rabin 1
Acceptance: 2 (Fin(0) & Inf(1))
AP: 2 "a" "b"
--BODY--
State: 0 "a U b" { 0 }
2 /* !a & !b */
0 /* a & !b */
1 /* !a & b */
1 /* a & b */

State: 1 { 1 }
1 1 1 1 /* four transitions on one line */

State: 2 "sink state" { 0 }
2 2 2 2

--END--

TGBA with implicit labels

0
̄𝑎 ∧ �̄� 0 𝑎 ∧ �̄�

1 ̄𝑎 ∧ 𝑏01𝑎 ∧ 𝑏

HOA: v1
name: "GFa & GFb"
States: 1
Start: 0
acc-name: generalized-Buchi 2
Acceptance: 2 (Inf(0) & Inf(1))
AP: 2 "a" "b"
--BODY--
State: 0
0 /* !a & !b */
0 {0} /* a & !b */
0 {1} /* !a & b */
0 {0 1} /* a & b */

--END--

TGBA with explicit labels

0
̄𝑎 ∧ �̄� 0 𝑎 ∧ �̄�

1 ̄𝑎 ∧ 𝑏01𝑎 ∧ 𝑏

HOA: v1
name: "GFa & GFb"
States: 1
Start: 0
acc-name: generalized-Buchi 2
Acceptance: 2 (Inf(0) & Inf(1))
AP: 2 "a" "b"
--BODY--
State: 0
[!0 & !1] 0
[0 & !1] 0 {0}
[!0 & 1] 0 {1}
[0 & 1] 0 {0 1}
--END--

TGBA with explicit labels using aliases

The following demonstrates the use of aliases to make the output slightly more readable (using @a instead of
0), and to abbreviate commonly used subformulas (@bc instead of 1 & 2).
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0
̄𝑎 ∧ 𝑏 ∧ 𝑐 0 𝑎 ∧ 𝑏 ∧ 𝑐

1 ̄𝑎 ∧ 𝑏 ∧ 𝑐01𝑎 ∧ 𝑏 ∧ 𝑐

HOA: v1
name: "GFa & GF(b & c)"
States: 1
Start: 0
acc-name: generalized-Buchi 2
Acceptance: 2 (Inf(0) & Inf(1))
AP: 3 "a" "b" "c"
Alias: @a 0
Alias: @bc 1 & 2
--BODY--
State: 0
[!@a & !@bc] 0
[@a & !@bc] 0 {0}
[!@a & @bc] 0 {1}
[@a & @bc] 0 {0 1}
--END--

Non-deterministic State-based Büchi automaton (à la Wring)

Encoding GFa using state labels requires multiple initial states.

0
𝑎

0 1
̄𝑎

HOA: v1
name: "GFa"
States: 2
Start: 0
Start: 1
acc-name: Buchi
Acceptance: 1 Inf(0)
AP: 1 "a"
--BODY--
State: [0] 0 {0}
0 1

State: [!0] 1
0 1

--END--

In this case, the acceptance and labels are carried by the states, so the only information given by the edges
lists are the destinations states 0 1.

Note that even if a tool has no support for state labels or multiple initial states, the above automaton could
easily be transformed into a transition-based one upon reading. It suffices to add a new initial state connected
to all the original initial states, and then to move all labels onto incoming transitions. Acceptance sets can
be moved to incoming or (more naturally) to outgoing transitions. For instance the following transition-based
Büchi automaton is equivalent to the previous example:

1 2

0

𝑎 𝑏

0
𝑎

0
̄𝑎

̄𝑎

𝑎

HOA: v1
States: 3
Start: 0
acc-name: Buchi
Acceptance: 1 Inf(0)
AP: 1 "a"
--BODY--
State: 0
[0] 1
[!0] 2
State: 1 /* former state 0 */
[0] 1 {0}
[!0] 2 {0}
State: 2 /* former state 1 */
[0] 1
[!0] 2
--END--
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Mixing state-based and transition-based acceptance

Here is a Büchi automaton for GFa | G(b <-> Xa).

0 1
G F 𝑎

2
𝑎 ∨ G(𝑏 ↔ X 𝑎)

3
̄𝑎 ∨ G(𝑏 ↔ X 𝑎)

0 0

⊤

𝑏
�̄�

0
𝑎

̄𝑎

𝑎 ∧ 𝑏
𝑎 ∧ �̄�

̄𝑎 ∧ 𝑏 ̄𝑎 ∧ �̄�

HOA: v1
name: "GFa | G(b <-> Xa)"
Start: 0
acc-name: Buchi
Acceptance: 1 Inf(0)
AP: 2 "a" "b"
properties: explicit-labels trans-labels
--BODY--
State: 0
[t] 1
[1] 2
[!1] 3
State: 1 "GFa"
[0] 1 {0}
[!0] 1
State: 2 "a & G(b <-> Xa)" {0}
[0&1] 2
[0&!1] 3
State: 3 "!a & G(b <-> Xa)" {0}
[!0&1] 2
[!0&!1] 3
--END--

In this automaton, marking states 2 and 3 as belonging to set 0 is equivalent to marking all their outgoing
transitions as such:

0 1
G F 𝑎

2
𝑎 ∨ G(𝑏 ↔ X 𝑎)

3
̄𝑎 ∨ G(𝑏 ↔ X 𝑎)

⊤

𝑏
�̄�

0
𝑎

̄𝑎

0𝑎 ∧ 𝑏
0

𝑎 ∧ �̄�

0
̄𝑎 ∧ 𝑏 0 ̄𝑎 ∧ �̄�

HOA: v1
name: "GFa | G(b <-> Xa)"
Start: 0
acc-name: Buchi
Acceptance: 1 Inf(0)
AP: 2 "a" "b"
properties: explicit-labels trans-labels trans-acc
--BODY--
State: 0
[t] 1
[1] 2
[!1] 3
State: 1 "GFa"
[0] 1 {0}
[!0] 1
State: 2 "a & G(b <-> Xa)"
[0&1] 2 {0}
[0&!1] 3 {0}
State: 3 "!a & G(b <-> Xa)"
[!0&1] 2 {0}
[!0&!1] 3 {0}
--END--

Mixing state-based and transition-based acceptance can also be done in the same state. For instance a state
like:

1
2

3

1
𝑎

0
̄𝑎

State: 1 {1}
[0] 2
[!0] 3 {0}

is equivalent to

1
2

3

1
𝑎

0 1
̄𝑎

State: 1
[0] 2 {1}
[!0] 3 {0 1}
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Alternating automata

Here is an example of alternating transition-based co-Büchi automaton encoding (Fa & G(b&Xc)) | c, it shows
an example of multiple initial states (including a conjunct), and an example of conjunct destination.

0
F 𝑎

1
⊤

2

G(𝑏 ∧ X 𝑐)
3

𝑐

0
⊤

𝑎

⊤

𝑏

𝑐

HOA: v1
name: "(Fa & G(b&Xc)) | c"
States: 4
Start: 0&2
Start: 3
acc-name: co-Buchi
Acceptance: 1 Fin(0)
AP: 3 "a" "b" "c"
--BODY--
State: 0 "Fa"
[t] 0 {0}
[0] 1
State: 1 "true"
[t] 1
State: 2 "G(b&Xc)"
[1] 2&3
State: 3 "c"
[2] 1
--END--

Formal Semantics of Omega-Automata
The following definition specifies alternating automata with transition-based acceptance. Because of universal
branching, the initial states and destination states of transitions are non-empty sets of states (i.e., elements of
2𝑄 � {∅}) interpreted as conjunctions. Automata without universal branching use just elements of Q as initial
or destination states.

Each omega-automaton described in this format can be seen as an automaton ⟨AP, 𝑄, 𝑚, 𝑅, 𝐼, Acc⟩ with labels
on transitions and transition-based acceptance, where:

• AP is a finite set of atomic propositions. We use 𝔹(AP) to denote the set of Boolean formulas over AP.
• 𝑄 is a finite set of states.
• 𝑚 is the number of acceptance sets.
• 𝑅 ⊆ 𝑄×𝔹(AP)×2{0,1,…,𝑚−1}×(2𝑄 �{∅}) is a transition relation. A quadruplet (𝑠, ℓ, 𝑀, 𝐷) ∈ 𝑅 represents a

transition from 𝑠 to the conjunction of states in 𝐷, labeled by a Boolean formula ℓ ∈ 𝔹(AP), and belonging
to the acceptance sets listed in 𝑀 ⊆ {0, 1, … , 𝑚 − 1}, where 𝑚 is the declared number of acceptance sets.
Let 𝑠(𝑡), ℓ(𝑡), 𝑀(𝑡), and 𝐷(𝑡) denote the corresponding components of a transition 𝑡.

• 𝐼 ⊆ (2𝑄 � {∅}) is a set of initial conjunctions of states.
• Acc is a Boolean formula over {Fin(𝑖), Fin(¬𝑖), Inf(𝑖), Inf(¬𝑖) ∣ 𝑖 ∈ {0, 1, … , 𝑚 − 1}}.

The indices of the acceptance sets appearing in the transitions induce a list of acceptance sets 𝐹 = (𝑆0, ..., 𝑆𝑚−1)
where 𝑆𝑖 ⊆ 𝑅 contains those transitions 𝑡 with 𝑖 ∈ 𝑀(𝑡), i.e., 𝑆𝑖 = {𝑡 ∈ 𝑅 ∣ 𝑖 ∈ 𝑀(𝑡)}.

The automaton is interpreted over infinite words, where letters are subsets of AP. A run over a word 𝑤 = 𝑎0𝑎1 …
is an infinite labeled directed acyclic graph (𝑉 , 𝐸, 𝜆) such that:

• 𝑉 is partitioned into 𝑉0 ∪ 𝑉1 ∪ 𝑉2 … where the sets 𝑉𝑖 are disjoint,
• for each edge 𝑒 ∈ 𝐸 there exists 𝑖 ≥ 0 such that 𝑒 ∈ 𝑉𝑖 × 𝑉𝑖+1,
• 𝜆 ∶ 𝑉 → 𝑅 is a labeling function such that {𝑠(𝜆(𝑥)) ∣ 𝑥 ∈ 𝑉0} ∈ 𝐼 and, for each 𝑥 ∈ 𝑉𝑖, ℓ𝑖(𝜆(𝑥))

evaluates to True in the valuation assigning True to atomic propositions in 𝑎𝑖 and False to all other
atomic propositions, and successors of 𝑥 correspond to the target conjunction of states of the transition
𝜆(𝑥), i.e., 𝐷(𝜆(𝑥)) = {𝑠(𝜆(𝑦)) ∣ (𝑥, 𝑦) ∈ 𝐸}. We say that the transition 𝜆(𝑥) is applied to 𝑥.

Runs of automata without universal branching are simply infinite linear sequences of nodes.

A run is accepting if each branch of the run (i.e., each infinite oriented path starting in 𝑉0) satisfies the
acceptance condition Acc, where a branch satisfies

• Fin(𝑖) if all transitions in 𝑆𝑖 are applied only to finitely many nodes on the branch.
• Fin(¬𝑖) if all transitions outside 𝑆𝑖 are applied only to finitely many nodes on the branch.
• Inf(𝑖) if some transition in 𝑆𝑖 is applied to infinitely many nodes on the branch.
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• Inf(¬𝑖) if some transition outside 𝑆𝑖 is applied to infinitely many nodes on the branch.

The automaton recognizes the language of all words for which there exists an accepting run of the automaton.

As mentioned above, the format also supports labels on states. This is formally seen as an abbreviation for the
situation where all transitions leaving the state have this label. The format even admits automata combining
states with labels, unlabeled states with labels on all outgoing transitions, and unlabeled states with implicitly
labeled transitions.

The format supports both state-based and transition-based acceptance sets. In our transition-based semantics,
as illustrated by our previous examples, marking a state as belonging to some acceptance set with (for instance)
State: 0 {1 3} is syntactic sugar for marking all the outgoing transitions of state 0 as belonging to acceptance
sets 1 and 3. This is especially important if one combines states and transitions in an acceptance set and use
negation of this acceptance sets in the acceptance condition.

Semantics for Pure State-Based Acceptance
In tools that manipulate only state-based acceptance, acceptance will only be used for states, and therefore the
transition-based semantics are inconvenient. For these tools, one can consider the following semantics.

The omega-automata are represented by a tuple ⟨AP, 𝑄, 𝑅, 𝐼, 𝐹 , Acc⟩, where:

• AP is a finite set of atomic propositions.
• 𝑄 is a finite set of states.
• 𝑅 ⊆ 𝑄 × 𝔹(AP) × (2𝑄 � {∅}) is a transition relation,
• 𝐼 ⊆ (2𝑄 � {∅}) is a set of initial conjunctions of states,
• 𝐹 = {𝑆0, 𝑆1, … , 𝑆𝑚−1} is a finite set of acceptance sets. Each acceptance set 𝑆𝑖 ⊆ 𝑄 is a subset of states.
• Acc is an acceptance condition.

In contrast to the automaton with transition-based acceptance, the acceptance sets 𝑆0, ..., 𝑆𝑚−1 appear directly
in the definition, with each 𝑆𝑖 being a subset of states. The acceptance condition is still a formula defined over
Fin(𝑖), Fin(¬𝑖), Inf(𝑖), or Inf(¬𝑖), but this time each 𝑖 refers to the set 𝑆𝑖 of states that must occur infinitely or
finitely often on each branch of an accepting run, and the complement operation ¬ should be done with respect
to 𝑄 instead of 𝑅.

An automaton with state-based acceptance can be trivially converted to transition-based acceptance by shifting
the acceptance set membership from each state to its outgoing transitions, and the two semantics are compatible
in the sense that the two automata would recognize the same language. If the automaton has no dead states
(i.e., states without successor), the result of such transformation can easily be reversed.

The two semantics disagree slightly on the handling of dead states. The state-based semantics allow dead states
to appear in acceptance sets, while there is no way to do that with transition-based acceptance. This difference
is inconsequential: a dead state is never going to contribute anything useful the recognized language.
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